Invited Speakers
Prof. Dharma AgrawalSchool of Computing Sciences and Informatics 819D Old Chemistry, University of Cincinnati, Cincinnati, OH 45221-0008 resume |
Selecting LTE and Wireless Mesh Networks for Indoor/Outdoor Applications
ABSTRACT: The smart phone usage and multimedia devices have been increasing yearly and predictions indicate drastic increase in the upcoming years. Recently, various wireless technologies have been introduced to add flexibility to these gadgets. As data plans offered by the network service providers are expensive, users are inclined to utilize freely accessible and commonly available Wi-Fi networks indoors. LTE (Long Term Evolution) has been a topic of discussion in providing high data rates outdoors and various service providers are planning to roll out LTE networks all over the world. The objective of this presentation is to compare usefulness of these two leading wireless schemes based on LTE and Wireless Mesh Networks (WMN) and bring forward their advantages for indoor and outdoor environments. We also investigate to see if a hybrid LTE-WMN network may be feasible. Both these networks are heterogeneous in nature, employ cognitive approach and support multi hop communication. The main motivation behind this work is to utilize similarities in these networks, explore their capability of offering high data rates and generally have large coverage areas. In this work, we compare both these networks in terms of their data rates, range, cost, throughput, and power consumption. We also compare 802.11n based WMN with Femto cell in an indoor coverage scenario, while for outdoors; 802.16 based WMN is compared with LTE. The main objective is to help users select a network that could provide enhanced performance in a cost effective manner.
|
Prof. Manfred M. FischerInstitute for Economic Geography and GIScience, Vienna University of Economics and Business, Nordbergstr. 15/4/A, 1090 Vienna, Austria
resume |
Neoclassical growth theory, regions and spatial externalities
ABSTRACT: The presentation considers the standard neoclassical growth model in a Mankiw-Romer-Weil world with externalities across regions. The reduced form of this theoretical model and its associated empirical model lead to a spatial Durbin model, and this model provides very rich own- and cross-partial derivatives that quantify the magnitude of direct and indirect (spillover or externalities) effects that arise from changes in region’s characteristics (human and physical capital investment or population growth rates) at the outset in the theoretical model. A logical consequence of the simple dependence on a small number of nearby regions in the initial theoretical specification leads to a final-form model outcome where changes in a single region can potentially impact all other regions. This is perhaps surprising, but of course we must temper this result by noting that there is a decay of influence as we move to more distant or less connected regions. Using the scalar summary impact measures introduced by LeSage and Pace (2009) we can quantify and summarize the complicated set of non-linear impacts that fall on all regions as a result of changes in the physical and human capital in any region. We can decompose these impacts into direct and indirect (or externality) effects. Data for a system of 198 regions across 22 European countries over the period 1995 to 2004 are used to test the predictions of the model and to draw inferences regarding the magnitude of regional output responses to changes in physical and human capital endowments. The results reveal that technological interdependence among regions works through physical capital externalities crossing regional borders.
|
Prof. Wenny Rahayu
resume |
Global Spatial-Temporal Data Integration to support Collaborative Decision Making
ABSTRACT: There has been a huge effort in the recent years to establish a standard vocabulary and data representation for the areas where a collaborative decision support is required. The development of global standards for data interchange in time critical domains such as air traffic control, transportation systems, and medical informatics, have enabled the general industry in these areas to move into a more data-centric operations and services. The main aim of the standards is to support integration and collaborative decision support systems that are operationally driven by the underlying data.
The problem that impedes rapid and correct decision-making is that information is often segregated in many different formats and domains, and integrating them has been recognised as one of the major problems. For example, in the aviation industry, weather data given to flight en-route has different formats and standards from those of the airport notification messages. The fact that messages are exchanged using different standards has been an inherent problem in data integration in many spatial-temporal domains. The solution is to provide seamless data integration so that a sequence of information can be analysed ‘on the fly’.
Our aim is to develop an integration method for data that comes from different domains that operationally need to interact together. We especially focus on those domains that have temporal and spatial characteristics as their main properties. For example, in a flight plan from Melbourne to Ho Chi Minh City which comprises of multiple international airspace segments, a pilot can get an integrated view of the flight route with the weather forecast and airport notifications at each segment. This is only achievable if flight route, airport notifications, and weather forecast at each segment are integrated in a spatial temporal system.
In this talk, our recent efforts in large data integration, filtering, and visualisation will be presented. These integration efforts are often required to support real-time decision making processes in emergency situations, flight delays, and severe weather conditions.